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ABSTRACT
User engagement prediction plays a critical role for designing in-
teraction strategies to grow user engagement and increase revenue
in online social platforms. Through the in-depth analysis of the
real-world data from the world’s largest professional social plat-
forms, i.e., LinkedIn, we find that users expose diverse engagement
patterns, and a major reason for the differences in user engagement
patterns is that users have different intents. That is, people have dif-
ferent intents when using LinkedIn, e.g., applying for jobs, building
connections, or checking notifications, which shows quite different
engagement patterns. Meanwhile, user intents and the correspond-
ing engagement patterns may change over time. Although such
pattern differences and dynamics are essential for user engagement
prediction, differentiating user engagement patterns based on user
dynamic intents for better user engagement forecasting has not
received enough attention in previous works. In this paper, we pro-
posed a Dynamic Intent GuidedMeta Network (DIGMN), which
can explicitly model user intent varying with time and perform
differentiated user engagement forecasting. Specifically, we derive
some interpretable basic user intents as prior knowledge from data
mining and introduce prior intents in explicitly modeling dynamic
user intent. Furthermore, based on the dynamic user intent repre-
sentations, we propose a meta predictor to perform differentiated
user engagement forecasting. Through a comprehensive evaluation
on LinkedIn anonymous user data, our method outperforms state-
of-the-art baselines significantly, i.e., 2.96% and 3.48% absolute error
reduction, on coarse-grained and fine-grained user engagement
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prediction tasks, respectively, demonstrating the effectiveness of
our method.
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1 INTRODUCTION
Online professional social platforms like LinkedIn have become
a significant part of today’s lives. People use these platforms to
socialize, apply for jobs, read industry news, etc. Maintaining a high-
level user engagement is vital for these platforms, which can lead to
more revenue (e.g., more ad exposure). For the purpose of increasing
user engagement in the future, these platforms need to formulate
appropriate user interaction strategies, such as delivering content
that satisfies user intents or interests. Accurate user engagement
prediction is one of the core technologies for formulating these
strategies, which can help the platform conduct user modeling,
understand user needs, and provide personalized services.

Real-world users often exhibit different behaviors in online so-
cial platforms, which leads to their diverse engagement patterns.
Through data mining and analysis in the scenario of LinkedIn, we
found that the diversity of user engagement patterns is related to
the multiple intents of users using LinkedIn, as shown in Figure 1.
For instance, some users have the intent of looking for jobs recently,
and they will frequently visit LinkedIn to seek and apply for jobs,
increasing their engagement level rapidly in a period. As another
example, some users use LinkedIn to view industry news, and their

ar
X

iv
:2

21
0.

12
40

2v
1 

 [
cs

.L
G

] 
 2

2 
O

ct
 2

02
2

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


WSDM ’23, February 27 to March 3, 2023, Singapore Feifan Li, Lun Du and Qiang Fu, et al.

Check Notifications Find New Jobs View Industry News

Time

#
 s

es
si

on
s

⋯⋯

Day 1 Day 2 Day 3 ⋯Day 4 Day 1 Day 2 Day 3 ⋯Day 4 Day 1 Day 2 Day 3 ⋯Day 4

Figure 1: Example of different user engagement patterns
with different user intents.

engagement pattern is usually maintained at a relatively high level
because they regularly check the industry news on LinkedIn. These
insights suggest that user intents can be signals to differentiate user
engagement patterns.

However, user intents are usually not directly observable be-
cause they exist implicitly in human consciousness. How to extract
implicit user intents is a challenging problem. At the same time,
the user’s intents may change over time. For example, some users
initially use LinkedIn to look for jobs, and when they finish looking
for jobs, they may use LinkedIn to socialize (e.g., make new connec-
tions at a new company). Explicitly modeling dynamic user intent
is vital. It can help the platform understand users’ recent intent (or
interests) and provide users with content that matches their intent
to increase user engagement.

Recently, there have been many works on user engagement fore-
casting in social network platforms. [1] firstly groups new users
into some clusters and then uses a LSTM based model to predict
user churn rate. [2] constructs user action graph to characterize
and forecast new user engagement. [3] considers user interaction
actions and builds a user graph that evolves over time to predict
user engagement. Although engagement patterns vary between dif-
ferent users, these works use a model with static parameters for all
users to predict their future engagement, which cannot sufficiently
model diverse user engagement patterns and perform differentiated
user engagement forecasting. Meanwhile, some works show that
user intent can impact user engagement. [4] shows that user intent
can influence user engagement (e.g., usage time and return time) in
Pinterest. [5] demonstrates that user primary intents are associated
with how likely the user is to re-engage in activity tracking applica-
tions. On the one hand, these works have limitations in extracting
user intent. In [4], the user’s intent is obtained through a survey
when the app is just opened, which may affect the user’s subsequent
behaviors [6]. [5] adopts the activity that most commonly used by
the user as a proxy for the user’s intent. However, the user’s intent
may be diverse when using applications [7]. On the other hand,
these works do not explicitly model changes in user intent over
time.

To address the above challenges, we first use Latent Dirichlet
Allocation (LDA) [8] to perform user intent mining on large-scale
session data and identify basic user intents. Then, we propose a
Dynamic Intent GuidedMeta Network (DIGMN), which can capture
the user’s dynamic intent and perform differentiated user engage-
ment prediction. Specifically, DIGMN infers multiple user intents
during each session based on similarity computation with the basic

user intents and captures the variation of user intents over time
based on the sequence model. Besides, DIGMN contains a predic-
tion network based on meta-learning, which adopts a dynamic
intent guided attention mechanism to adjust network parameters
by performing a linear combination of basic parameters shared by
all users for differentiated user engagement forecasting. Extensive
experiments conducted on coarse-grained and fine-grained user en-
gagement forecasting tasks verify the effectiveness of our DIGMN
method.

The major contributions of this paper can be summarized as:
• We find that user intent can be very useful for differentiated user
engagement forecasting in online professional social platforms.

• We develop a Dynamic Intent Guided Meta Nework (DIGMN)
which explicitly model user intent’s evolution over time and
leverage intent guided attention mechanism to adjust model
parameters for differentiated user engagement modeling and
forecasting.

• Through evaluation experiments on anonymous data fromLinkedIn,
our proposed model DIGMN has improvements of 2.96% (Macro
F1-score) and 3.48% (AUROC) on coarse-grained and fine-grained
user engagement prediction tasks when compared to the state-of-
the-art model, showing the effectiveness of our proposed method.

2 RELATEDWORK
In this section, we present related work on user engagement fore-
casting, user intent modeling, and meta learning for dynamic net-
work parameters.

User engagement forecasting.Recently, there have beenmany
works on user engagement predicting from different perspectives
on the social platform. Such as: user behaviors and social attributes
[1], user action graphs [2], interaction actions between users [3],
and periodicity of user behaviors [9]. These works learn a model
with static parameters for all users to make predictions, which
cannot sufficiently model differentiated user engagement patterns.
[10] leverages a decision tree model to divide users into disjoint
groups and then learns a separate Logistic regression model for
each group of users to predict user churn. However, such separate
modeling compromises the model’s ability to capture similarities
between users. [11] adopts the matrix factorization to predict the
personalized user’s participation in mobile video. However, there is
a large amount of user behavior sequence data in our scenario. This
method can not effectively deal with the user’s behavior sequence
and its change over time.

User intent modeling. Some previous works exploit LDA [2,
12, 13], n-gram [2, 14] and deep learning model [15, 16] to mine
user intent from user behavior. At the same time, modeling user
intents can help us understand user needs better and is significant
in many scenarios; for instance, web searching [17, 18], e-commerce
application [4], image sharing social platform [19], activity tracking
application [5] and recommander systems [20–24]. However, to our
best knowledge, no related work has explicitly modeled user intent
and its variation for differentiated user engagement forecasting in
online social platforms.

Meta learning for dynamic networkparameters.Meta-learning
(also known as learning to learn) can be used to learn dynamic
model parameters, which is widely used in scenarios and tasks



DIGMN: Dynamic Intent Guided Meta Network WSDM ’23, February 27 to March 3, 2023, Singapore

Table 1: Types of user events we collect on the platform.

Event ID Event Type Explanation
1 Feed view and react to updates
2 Search search for members, jobs, or other
3 View Profile view profiles of members or companies
4 Jobs view or apply for jobs
5 PYMK invite members to build connections
6 Notification check notifications
7 Message check or send messages
8 Edit Profile edit personal profile
9 Share Content share content
10 Follow follow members, companies, or other

with diverse data distributions. There are usually two ways to learn
dynamic model parameters [25]: dynamically generate model pa-
rameters or dynamically adjust model parameters. For dynamically
generate model parameters: [26] uses a filter-generating network
to dynamically generate convolutional filters according to the in-
puts. [27] adopts a leranet to generate the parameters of a pupil
network from a single exemplar. [28] uses a hypernetworks to
generate weights of another network. [29] leverages a shared meta-
network to generate the parameters of the task-specific semantic
composition models. [30] utilizes a meta-knowledge learner to gen-
erate model parameters for modeling diversity spatial-temporal
correlations in urban traffic prediction. [31] adopts a meta network
to learn a personalized mapping function for each user in cross-
domain recommendation. [32], [33] and [34] adopt meta networks
to generate dynamic parameters of scenario-specific models for
CTR prediction. For dynamically adjust model parameters: [35]
incorporates meta-information that learned from a supplementary
neural network into a fixed base-level neural network to realize the
generalization for each type of input images. [36], [37], and [38],
in the light of different input images, use a separate network to
learn different weights for adjusting the parameters of convolution
kernels, which can obtain dynamic convolution kernels for feature
extraction. However, no existing works utilize meta learning for
predicting user engagement with diverse patterns in online social
platforms.

3 PRELIMINARY
In this section, we first introduce the relevant definitions, and then
formulate the user engagement forecasting tasks that we use in this
work.

3.1 Basic Definitions
We define 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑁 } as a set of different users and 𝐼 =

{𝑖1, 𝑖2, ..., 𝑖𝑀 } as a set of different event types, where 𝑁,𝑀 is the
number of users and event types respectively.

User event. The user’s behaviors on the platform can be ab-
stracted as events for collection. Formally, a user event 𝑒 can be
denoted by 𝑒 = (𝑢, 𝑖, 𝑡), where 𝑢 ∈ 𝑈 is the user, 𝑖 ∈ 𝐼 is the event
type and 𝑡 is the time when the event happens. We collect ten major
event types on the platform, as shown in Table 1. These 10 events
can completely cover users’ activities on the platform.

User session. Generally, a session is a set of continuous brows-
ing activities with gaps between full-page views not more than

a threshold. Formally, a session can be denoted as S = (𝑢, c, E),
where 𝑢 ∈ 𝑈 is the user who starts the session, c is the session con-
text information (e.g., the session start time, the session duration
time and the software client) and E is the sequence of events that
take place during the session.

User engagement. User engagement measures how often and
how long users interact with the website or application, which
can reflect how much value users get from the website or app [39].
Different platforms use different metrics to track user engagement.
In this paper, we adopt two metrics to measure the engagement of
each user in LinkedIn: average active days (coarse-grained, which
is the same as the definition of active rate in [2]) and average
session numbers (fine-grained). The average session numbers 𝑠 =
# 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑦𝑠
, where a valid session is a session that contains at

least one event in Table 1. The average active days𝑑 =
# 𝑎𝑐𝑡𝑖𝑣𝑒 𝑑𝑎𝑦𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑦𝑠
,

where an active day is defined as a day that the user has at least
one valid session.

Platformactions. Previous studies have demonstrated that user
engagement on the platform can be increased through notifications
[40, 41], incentives including badges [42, 43], etc. Therefore, we
need to consider the impact of the interaction actions between the
platform and the user when forecasting user engagement. For sim-
plicity, here we only consider the platform delivery messages. The
platform will deliver messages to users according to their statuses,
such as updates on the people or companies they follow, reminders
of unread messages, and job recommendations. Platform delivery
messages with appropriate content at a suitable time can provide
users with a better experience in the platform, thereby enhancing
user engagement in the future. On the contrary, too many irrelevant
platform delivery messages may damage the user experience and
lead to user churn. Formally, a platform delivery message can be
denoted asD = (𝑢,𝑤, 𝑟, 𝑡), where 𝑢 ∈ 𝑈 is the user being delivered,
𝑤 is the way the message is delivered (i.e., email, SMS and in-app
push), 𝑟 is the content of delivery message (i.e., Feed relevant, Jobs
relevant, PYMK relevant, Message relevant and others), 𝑡 is the
delivery time.

3.2 Task Formulation
In this work, we predict the trend of user engagement instead of
directly predicting the future engagement of users. This is because
we pay more attention to the change in user engagement in actual
business scenarios. For example, when designing a platform mes-
sage delivery strategy in the scenario of user retention, the change
value (Δ𝑠 or Δ𝑑) of the user engagement caused by the delivered
message is an essential indicator of business decisions. Specifically,
we define two user engagement trend forecasting tasks as follows:
• Day-level Task (coarse-grained): We predict the trend of the
average active days of the user, which can be viewed as a 3-class
(i.e., increase, decrease, or stay the same) classification task.

• Session-level Task (fine-grained): We predict the trend of the
average session numbers of the user, which can be viewed as a 2-
class (i.e., decrease or not decrease) classification task. The reason
for setting it as a binary classification task is that the number
of user sessions has a broader distribution than the number of
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active days, and users with a large number of sessions are less
likely to have the same number of sessions over a while.
Based on the above definitions, for any user 𝑢 ∈ 𝑈 , given the

user’s macroscopic features 𝑴𝑢 (e.g., the number of connections,
the average number of sessions per day in the past period), session
sequence 𝑺𝑢 =< S1,S2, ...,S𝑇 >, and the latest platform delivery
message 𝑫𝑢 in the past period, forecasting user engagement trend
𝑦𝑢 in the next period can be formulated as follows:

Pr(𝑦𝑢 |𝑴𝑢 , 𝑺𝑢 ,𝑫𝑢 , ;Θ) (1)

where𝑇 is the number of sessions, 𝑦𝑢 is the user engagement trend
label, and Θ is the parameters we need to learn.

4 INTENT MINING
In this section, we introduce how to perform user intent mining
and show the basic user intents we obtain from data mining.

We assume that every user has at least one intent within each
session [44]. The user’s intents are usually not directly observed,
and they exist implicitly in the user’s consciousness. It is difficult
for us to collect a large number of user behavior samples with
user intent labels, so using unsupervised methods for user intent
mining is a more feasible option. Intuitively, the user’s intents
influence the user’s behaviors, and the user’s behaviors constitute
the set of events in the session. This process is similar to generating
documents with an unsupervised topic model LDA. Like previous
work [2], we treat each session as a document and each event type
as a word, then apply LDA to mine basic user intents.

We use Spark MLlib1 to perform LDA on approximately 6 mil-
lion anonymous user session data for intent mining. To determine
the optimal number of intents with semantic meaning, we adopt
perplexity as the evaluation metric to search for the optimal intent
number in {2, 3, 4, ..., 10}. When the number of intents is equal to 7,
making the LDA model has the least perplexity.

These 7 topics can be regarded as 7 basic user intents (denoted
as 𝒕1, 𝒕2, ..., 𝒕7 ∈ R10), each of which is composed of events with
different weights (also can be view as probability) as shown in
Figure 2. The meaning of each intent can be explained by the top
weight events that make up them. For example, we can find that
the two events with top weight making up intent 1 are PYMK and
Profile View, this intent indicates that the users want to expand
their connections in LinkedIn.

5 DYNAMIC INTENT GUIDED META
NETWORK

In this section, we introduce our proposed model DIGMN. The
framework of our proposed model is illustrated in Figure 3. It con-
sists of three main components: behavior evolution layer, intent
evolution layer and a meta predictor.

5.1 Behavior Evolution Layer
Users’ behaviors change over time, and the length of the behavior
sequence of different users may be different. LSTM[? ] has been
widely used for modeling variable-length user behavioral sequence.
In this paper, we utilize a 1-layer LSTM to model user behavior
evolution.
1https://spark.apache.org/mllib/

Notification
Search

Profile View

PYMK

Jobs
Message

Feed

Profile Edit

Content Share

Follow

Intent 1
Intent 2
Intent 3
Intent 4
Intent 5
Intent 6
Intent 7

Figure 2: Basic user intents. There are 7 basic intents ob-
tained by LDA, and we show the event weights that compose
them.

For each session S, we represent it by concatenating the session
context features 𝒄 and session event frequency𝝂 = (𝜈1, 𝜈2, ..., 𝜈10) ∈
R10, where 𝜈𝑖 is the frequency of Event 𝑖 (e.g., If there are 100 events
happen in a session, and the Feed event occurs 10 times, then
𝜈1 = 10/100 = 0.1). We take 𝒔 = (𝝂, 𝒄) as the input of the session
LSTM unit at each timestep. Since the user’s behavior sequences
are of different lengths, we take the last timestep output of LSTM
as the representation of the user’s behavior features in the past
period.

5.2 Intent Evolution Layer
A user may have multiple intents during one session. For example,
the user can use LinkedIn to view the updates on the industry
news (i.e., intent 3) and share content related to himself/herself (i.e.,
intent 5) at the same time. We can infer the user’s possible intents
based on the events happening during this session.

In this paper, we exploit a simple and effective way to infer user
intent in each session. Given a session’s event frequency 𝝂 and
the basic user intents 𝒕1, 𝒕2, ..., 𝒕7 obtained by LDA in the intent
mining stage, we can infer the user intents 𝒊 = (𝑖1, 𝑖2, ..., 𝑖7) during
this session. To be specific, 𝑖𝑘 is the cosine similarity between the
session event frequency 𝝂 and the 𝑘-th basic user intent 𝒕𝑘 , which
measures the degree to which the current session contains the 𝑘-th
intent and can be calculated as follows:

𝑖𝑘 =
𝝂 · 𝒕𝑘

| |𝝂 | | × | |𝒕𝑘 | |
(2)

By performing the above intent extraction operation on each
user session, we can obtain an intent sequence for each user with
the same length as the user session sequence. Another 1-layer LSTM
is adopted to model the variation of user intent over time. We take
the intent representation 𝒊 of each session as the input of the intent
LSTM unit at each timestep. We also take the LSTM’s last timestep
output to represent the user’s dynamic intent over the past period.

5.3 Meta Predictor
Different users have different engagement patterns, and the user
engagement pattern may change in different periods. Previous
works [1–3] use a model with the static parameters Θ for different
users to predict their future engagement in social platform, which
can be formulated as:

𝒚 = 𝐹 (𝒙,Θ) (3)
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Figure 3: The framework of our proposed model. It consists of three main components: behavior evolution layer, intent evo-
lution layer and a meta predictor.

where 𝒙 is the model input (i.e., user features) and 𝒚 is the model
output. In order to make a good prediction, the model tends to
capture the common patterns of all users, which is not optimal
for modeling and predicting diverse user engagement patterns in
real scenarios. The most straightforward idea is to learn a unique
predictor for each user or a group of similar users. However, there
is a certain similarity between users, while separate modeling may
impair the model’s ability to capture the similarity between users.
Therefore, we need a predictor that can better model the diversity
in user engagement patterns while can also capture the similarities
between users.

Dynamic parameters neural networks have shown promising re-
sults in various real-world tasks and can dynamically adjust or gen-
erate model parameters Θ∗ according to different inputs 𝒙 , which
have a more powerful representation ability. Compared with for-
mula (3), it can be formulated as:

𝒚 = 𝐹 (𝒙,Θ∗) = 𝐹 (𝒙, 𝜙 (𝒙,Θ)) (4)

where 𝜙 (·,Θ) is the operation that adjusts or generates model pa-
rameters according to input 𝒙 . A common technique in dynamic
parameters neural networks is attention on parameters [36, 37].
It assumes that there are some basic learnable parameters with
the same shape in the dynamic parameter layer. Given different
inputs, the meta network can generate different attention weights
to combine these basic learnable parameters in dynamic parameter
layer to obtain dynamic parameters and make transformations. In
our scenario, the meta network can adjust the model parameters ac-
cording to different user feature inputs for differentiated modeling.
At the same time, all users share the basic learnable parameters of
the dynamic parameter layer, which enables the model to capture
the similarities between users.

According to the previous analysis, we can use the user dynamic
intent representation obtained from the intent evolution layer as
the input signal to parameter adjust operation 𝜙 (·,Θ) in the meta
network to perform differentiated user engagement modeling and
forecasting. Specifically, we design a meta predictor which contains
a meta network and multiple stacked fully connected layers with
dynamic parameters (FC-D layer), as illustrated in Figure 3.

5.3.1 FullyConnected LayerswithDynamic Parameters. As
illustrated in Figure 4, assuming that the 𝑙-th FC-D layer transforms
the input feature 𝒉𝑙 ∈ R𝑚 into 𝒉𝑙+1 ∈ R𝑛 , and correspondingly
assuming there are 𝑑 basic learnable parameters𝑾𝑙

1,𝑾
𝑙
2, ...,𝑾

𝑙
𝑑
∈

R(𝑚∗𝑛) in it, denoted as𝑾𝑙 = [𝑾𝑙
1,𝑾

𝑙
2, ...,𝑾

𝑙
𝑑
]𝑇 ∈ R𝑑×(𝑚∗𝑛) . The

𝑙-th FC-D layer computes the following transformation:

𝒉𝑙+1 = ̂𝑾𝑙 · 𝒉𝑙 + 𝒃𝑙 (5)

where ̂𝑾𝑙 ∈ R𝑚×𝑛, 𝒃𝑙 ∈ R𝑛 are the weights and bias of the 𝑙-th
FC-D layer adjusted by the meta network.

5.3.2 Meta Network. The adjustment process of ̂𝑾𝑙 in the meta
network is shown in Figure 5. The combination weights 𝒂 = [𝑎1, ...,
𝑎𝑑 ]𝑇 ∈ R𝑑 (which can be seen as meta-knowledge) of basic learn-
able parameters𝑾𝑙 is derived by applying a non-linear transfor-
mation and a Softmax operation to user dynamic intent (denoted
as˜𝒊). In this paper, we utilize two fully connected layers with ReLU
activation function to perform non-transformation, which can be
formulated as follows:

𝒂 = Softmax(𝑾2 (ReLU(𝑾1˜𝒊 + 𝒃1)) + 𝒃2)

𝑠 .𝑡 .

𝑑∑︁
𝑖=1

𝑎𝑖 = 1, 0 < 𝑎𝑖 < 1
(6)
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Figure 4: The 𝑙-th fully connected layers with dynamic pa-
rameters.

where𝑾1,𝑾2, 𝒃1, 𝒃2 are learnable parameters. Then we can com-
bine the basic learnable parameters𝑾𝑙 = [𝑾𝑙

1,𝑾
𝑙
2, ...,𝑾

𝑙
𝑑
]𝑇 through

𝒂, and obtain the adjusted transformation matrix ̂𝑾𝑙 of 𝑙-th FC-D
layer through the reshape operation:

̂𝑾𝑙 = Reshape(𝒂𝑇𝑾𝑙 ) = Reshape(
𝑑∑︁
𝑖=1

𝑎𝑖𝑾
𝑙
𝑖 ) (7)

𝒃𝑙 can be calculated in the similar way as ̂𝑾𝑙 .
Each row of𝑾𝑙 (i.e.,𝑾𝑙

𝑖
, 𝑖 = 1, 2, .., 𝑑) can be regarded as inde-

pendent basic learnable parameters. ̂𝑾𝑙 is a linear combination of
𝑾𝑙

1,𝑾
𝑙
2, ...,𝑾

𝑙
𝑑
, and we hope that𝑾𝑙

1,𝑾
𝑙
2, ...,𝑾

𝑙
𝑑
are as orthogonal

as possible to reduce redundant information. [45] summarizes some
orthogonal regularization methods for parameters, including "se-
lective" Soft Orthogonality Regularization, which can be written as
follows:

𝜆 · | | (𝑾𝑙 (𝑾𝑙 )𝑇 − 𝑰 ) | |2𝐹 (8)

where 𝜆 is the regularization coefficient, 𝑰 ∈ R𝑑×𝑑 is the identity
matrix. Here we do not limit the norm of𝑾𝑙

𝑖
to 1, and adopt the

following orthogonal regularization term:

L𝑅 =

𝐿∑︁
𝑙=1

| | (𝑾𝑙 (𝑾𝑙 )𝑇 − 𝑰 ) ⊙ (1 − 𝑰 ) | |2𝐹 (9)

where 1 ∈ R𝑑×𝑑 is a matrix whose elements are all 1, ⊙ is Hadamard
product, 𝐿 is the number of FC-D layers.
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Figure 5: Meta Network.

5.4 End-to-end model training
We adopt end-to-end learning strategy and use error back propa-
gation to train our proposed model. We choose cross-entropy as
classification loss function, which can be formulated as:

L𝐶 = − 1
𝑛

∑︁
𝑖

∑︁
𝑐

𝑦𝑖𝑐 log(𝑦𝑖𝑐 ) (10)

where 𝑛 is the number of samples, 𝑖 represents the 𝑖-th sample, 𝑦𝑖𝑐
equals to 1 if 𝑖 belongs to class 𝑐 otherwise 0, 𝑦𝑖𝑐 is the predicted
probability that sample 𝑖 belongs to class 𝑐 . After adding the regular-
ization term for the parameters of meta predictor, the loss function
can be written as:

L = L𝐶 + 𝛽 · L𝑅 (11)

where 𝛽 is the hyperparameter that trades off classification loss L𝐶

and regularization term L𝑅 .

6 EVALUATION
To evaluate the performance of our proposed model, we conduct
experiments on real-world anonymous users’ data from LinkedIn.
In this section, we first describe the dataset used in this work and
introduce the detailed experimental settings. Then, we show that
DIGMN outperforms current state-of-the-art models on the user
engagement prediction task, demonstrating the effectiveness of
DIGMN. To be more specific, we aim to answer the following re-
search questions:
• RQ1: Can DIGMN outperform state-of-the-art baselines in user
engagement forecasting tasks at different granularities?

• RQ2: Does DIGMN perform better than a network with static
parameters with a similar number of parameters?

• RQ3: How does each part in DIGMN affect the performance?
• RQ4: Is dynamic user intent a good signal to differentiate diverse
user engagement patterns?

• RQ5: How do hyperparameters affect the performance?
• RQ6: Is it effective to introduce prior intent obtained by LDA in
DIGMN?

• RQ7: Can DIGMN learn interpretable user dynamic intent repre-
sentations?

6.1 Experimental Setup
6.1.1 Datasets. In order to protect user privacy, we collect coarse-
grained behavioral data (only the types of events, as shown in Table
1, not detailed user behaviors) of anonymous users during four
weeks. To make the extracted dynamic intent information more
meaningful, we filter out users with less than 7 (median) sessions
during the first two weeks. As shown in Table 2, the user engage-
ment trend label 𝑦 is obtained by comparing the user engagement
in the first two weeks (i.e., 𝑑ℎ , 𝑠ℎ) and the following two weeks (i.e.,
𝑑 𝑓 , 𝑠 𝑓 ).
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Table 2: Labels of user engagement forecasting tasks.

Day-level Task Session-level Task

y =


−1, 𝑑ℎ > 𝑑 𝑓

0, 𝑑ℎ = 𝑑 𝑓

1, 𝑑ℎ < 𝑑 𝑓

y =

{0, 𝑠ℎ > 𝑠 𝑓

1, 𝑠ℎ ≤ 𝑠 𝑓

The label distribution of day-level task is approximately 𝑦 = −1 :
𝑦 = 0 : 𝑦 = 1 ≈ 2 : 2 : 1, and the label distribution of session-level
task is approximately 𝑦 = 0 : 𝑦 = 1 ≈ 3 : 2. We randomly sample
200K users for each experiment and split them into three parts: 80%
of the samples (i.e., users) for training, 10% for validation, and the
rest 10% for testing.

6.1.2 Evaluation Metrics. For day-level task (3-class classifica-
tion task), we adopt Macro F1-score as our metric following Liu
et al.[2]’s work. Macro F1-score is the average F1-score for each
class and can evaluate the classifier in the case of class imbalance.
Furthermore, for session-level task (2-class classification task), AU-
ROC is adopted as our metric, which is a popular metric for the
binary-classification task.

6.1.3 Comparison Methods. We do not collect the interaction
actions between users in this work. Considering comparability, we
did not compare with the FATE [3], which uses interaction behav-
iors between users to predict user engagement. For brevity, we
use {ℎ1, ℎ2, ...} to denote the hidden state dimension of fully con-
nected layer, we compare our proposed model against the following
baselines:
• Logistic Regression (LR): We use user macroscopic features
and the latest platform delivery message to make predictions.

• XGBoost [46]: Use the same input features as Logistic Regression
to classify.

• Multilayer Perceptron (MLP): We implement a MLP with two
hidden layers {64, 32} using the same features as Logistic Regres-
sion and XGBoost as input.

• Activity LSTM [1]: We count the number of events in Table 1
that occurred each day for the user in the past two weeks, and get
a time series 𝑨 ∈ R10×14 as the input of the activity LSTM. We
implement a two-layer LSTM following setups in [1], and fed the
final output of the activity LSTM concatenating with the latest
platform delivery message to a MLP with two hidden layers {64,
32} for prediction.

• Temporal GCN-LSTM [2]: We treat events as actions and con-
struct user’s action graph according to [2]. Temporal GCN-LSTM
first applies GCN on action graph to extract user fine-grained
features, then fed it into LSTM to capture its temporal dynamics.
We implement a MLP with two hidden layers {64, 32} for predic-
tion based on the last final output of LSTM concatenating with
the latest platform delivery message.

• Deep Multi-channel [2]: To achieve the best performance, it
combines user macroscopic features, the latest platform delivery
message, activity LSTM, and Temporal GCN-LSTM. It can be
viewed as the state-of-the-art model for predicting user engage-
ment that does not consider the interaction behaviors between
users. For comparability, we implement a MLP with two hidden

layers {64, 32} to predict user engagement based on the output of
the above all modules.

6.1.4 Evaluation Settings. The output dimension of the linear
mapping layer is set to be half of the input dimension. The hidden
unit of session LSTM and intent LSTM are empirically set to 32.
We implement DIGMN with 𝐿 FC-D layers, where 𝐿 is searched
from 1 to 5. The hidden units of the non-linear transformation
layer in the meta network are set to 32 and the dimension of 𝒂
is searched from 2 to 10. The hyperparameter 𝛽 is searched in
[10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 0]. We adopt Adam [47] as opti-
mizer with initial learning rate 10−3 and learning rate decay half
every 20 epochs. According to [48], the authors argue against using
ℓ2 weight decay and the orthogonal regularization term together,
so we only use ℓ2 weight decay for learnable parameters other
than𝑾𝑙 (𝑙 = 1, 2, ..., 𝐿) in FC-D layers with a decay rate 10−5. Early
stopping strategy is also used on the validation set for avoiding
overfitting. Our experiments are conducted on a single machine
with a 2.4GHz 12-core CPU and 64GB of memory. Each experiment
is repeated 5 times with different random seeds.

6.2 Performance Comparison (RQ1, RQ2)
Table 3 lists the experiment results of all compared methods. We ob-
serve that DIGMN performs best on both day-level and session-level
user engagement prediction tasks, which shows the effectiveness of
DIGMN. The possible reason for the poor performance of activity
LSTM and Temporal GCN-LSTM on our dataset is that our user
session data is sparse (each user averages around 2 session a day in
our dataset, but 7 in Liu et al.[2]’s dataset), which results in sparse
activity sequences and action graphs, reducing their performance.

Compared with the FC layer, the FC-D layer used in DIGMN
increases the learnable parameters. Take one FC-D layer as an
example, assuming that it maps the input 𝒉 ∈ R𝑚 to 𝒉′ ∈ R𝑛 , then
the learnable parameters of FC-D layer is 𝑑 ∗𝑚 ∗ 𝑛 (for brevity,
ignoring bias), where 𝑑 is the number of basic parameters used
for linear combination. However, for the FC layer, its number of
learnable parameters is𝑚 ∗ 𝑛. For comparability, we replace FC-D
layers (Dynamic) in DIGMN with FC layers (Static). As shown in
Table 4, we observe DIGMN with dynamic parameters outperforms
DIGMN with static parameters in two tasks, demonstrating the
effectiveness of leveraging dynamic parameters network to achieve
differentiated user engagement prediction.

6.3 Model Ablation Study (RQ3, RQ4)
We conduct the following ablation study on the session-level user
engagement prediction task.

We use a MLP with two hidden layers (# hidden units are 64
and 32) as the predictor to investigate the effectiveness of various
components in our model. As shown in Figure 6(a), we find that
simultaneously using the user’s macroscopic features, platform
delivery message, session features, and intent features can achieve
the best results.

We also study the influence of different adjust signal of DIGMN,
as shown in Figure 6(b). We find that intent as a parameter adjust-
ment signal performs best, indicating that intent can distinguish
different engagement levels well. Introducing too much information
to adjust parameters may impair the model classification ability.
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Table 3: Performance comparison on the classification of
user engagement trends at the day-level and the session-
level.

Model
Task Day-level Session-level

Macro F1-Score AUROC

Feature-based model

LR 0.446 ± 0.000 0.561 ± 0.000
XGBoost 0.460 ± 0.001 0.569 ± 0.001

End-to-end neural network model

MLP 0.463 ± 0.002 0.571 ± 0.002
Activity LSTM 0.518 ± 0.001 0.605 ± 0.001
Temporal GCN-LSTM 0.522 ± 0.002 0.600 ± 0.003
Deep Multi-channel 0.575 ± 0.002 0.633 ± 0.002
DIGMN (ours) 0.592 ± 0.001 0.655 ± 0.001

Improvements 2.96% 3.48%

AU
R
O
C
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S+D M+S+D I+S+D M+I+S+D

(a) Ablation study on different model
components.

AU
R

O
C

0.63

0.64

0.65
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Parameter adjustment signal
M S I M+I M+S I+S M+I+S

(b) Ablation study on different parame-
ter adjustment signal of DIGMN.

Figure 6: Ablation study of components and different param-
eter adjustment signal. 𝑀,𝐷, 𝑆, 𝐼 represent macroscopic fea-
tures, the latest platform delivery message, session features
and intent features respectively.

6.4 Hyperparameter Sensitivity (RQ5)
We conduct the following hyperparameter sensitivity study on the
session-level user engagement prediction task.
• Hyperparameter sensitivity of 𝒂: As shown in Figure 7(a), we
search for the optimal dimension of 𝒂 between 2 and 10, and find
that when the dimension of 𝒂 is too small or too large, it will
hurt the model’s performance. The possible reason is that when
the dimension of 𝒂 is small, the expressive ability of the model is
limited and cannot sufficiently capture the diverse engagement
patterns of users. However, when the dimension of 𝒂 is large, the
number of parameters of the model will rapidly increase, which
may cause overfitting and weaken generalization ability. On our
dataset, the model performs best when the dimension of 𝒂 is
equal to 4.

• Hyperparameter sensitivity of 𝛽 : As illustrated in Figure 7(b),
we adopt grid search in [10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 0], and
find that the model performs best when 𝛽 = 10−2. This indi-
cates that too strong orthogonal constraints on FC-D layer will
damage the classification ability of the model, and adding proper
orthogonal constraints to the FC-D layer can improve the model’s
performance.

AU
R

O
C

0.645

0.650

0.655

Dimension of a
2 3 4 5 6 7 8 9 10

(a) Prediction performance of different
dimension of 𝒂.
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0.650
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(b) Prediction performance of different
𝛽 .

Figure 7: Hyperparameter sensitivity.

• Hyperparameter sensitivity of 𝐿: As illustrated in Table 5, we
vary the number of FC-D layers (i.e., 𝐿) in the meta predictor
from 1 to 5 and find that the model achieves the best performance
when 𝐿 = 3. The possible reason is that when the number of FC-D
layers is small, the learning ability of the model is insufficient,
and the model is prone to underfitting. In contrast, when the
number of FC-D layers is large, the model is prone to overfitting,
which damages the model’s generalization ability.

Table 5: Prediction performance of different 𝐿.

# FC-D Layers # Hidden Units AUROC

𝐿 = 1 - 0.645 ± 0.001
𝐿 = 2 {64} 0.651 ± 0.001
𝐿 = 3 {64,32} 0.655 ± 0.001
𝐿 = 4 {64,32,32} 0.652 ± 0.001
𝐿 = 5 {64,32,32,32} 0.646 ± 0.002

6.5 Further Analysis (RQ6)
In order to verify the effectiveness of introducing the prior in-
tent obtained by LDA in DIGMN, we replace the intent inference
operation based on cosine similarity computation in the intent evo-
lution layer with a linear mapping, which can be formulated as
𝒊 = tanh(𝑾𝝂 + 𝒃), where𝑾 ∈ R10×7, 𝒃 ∈ R7 are learnable parame-
ters, tanh(·) is hyperbolic tangent activation functions used to limit
the output value between -1 and 1 (same range as cosine similarity).
As shown in Table 6, we can observe that introducing prior user
intents obtained by LDA in DIGMN performs better than directly
learning the implicit intent representation. The possible reason is
that the prior intents are learned on a larger amount of data, while
the end-to-end learning user intent representation usually only use
a part of the data, and the former contains more information.

Table 6: Prediction performance of different methods to ex-
tract session intents.

Methods to extract session intents AUROC

End-to-end learning 0.644 ± 0.001
Prior intents 0.655 ± 0.001

6.6 Visualization (RQ7)
We use PCA to reduce the dimensions of dynamic user intent repre-
sentation from 32 to 3 and 2 in the test dataset of the session-level
user engagement forecasting task. The label of each sample is the
user’s most frequent intent in the past two weeks. As shown in
Figure 8(a) and 8(b), we can observe that the intent evolution layer
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Table 4: Performance comparison of DIGMN with dynamic predictor and DIGMN with static predictor.

Model
Task # Hidden Units Day-level Session-level

in Predictor Macro F1-Score # Parameters AUROC # Parameters

DIGMN (Static) {64, 32} 0.580 ± 0.001 18.8K 0.642 ± 0.001 18.7K
DIGMN (Static) {160, 96} 0.585 ± 0.001 38.6K 0.645 ± 0.002 38.5K
DIGMN (Dynamic) {64, 32} 0.592 ± 0.001 40.8K 0.655 ± 0.001 40.7K

can learn meaningful and discriminative user dynamic intent repre-
sentation. Subsequent meta predictors can leverage user dynamic
intent representation to adjust network parameters and perform
differentiated user engagement prediction.

(a) The distribution of user dynamic in-
tent in to 3-dimensional space.

(b) The distribution of user dynamic in-
tent in to 2-dimensional space.

Figure 8: The visualization of dynamic user intent represen-
tation.We apply zero-mean normalization to the input high-
dimensional vectors before using PCA for dimension reduc-
tion.

7 CONCLUSIONS
In this work, we use LDA on user session data to mine basic user
intents. Meanwhile, we propose a dynamic intent guided meta net-
work (DIGMN) to explicitly model user intent evolution over time
and perform differentiated user engagement forecasting. Experi-
ments on the real-world dataset from LinkedIn demonstrate the
effectiveness of our method.

The future work will focus on the interpretability of the method
and apply our model to more business scenarios, such as the plat-
form message delivery system.
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